Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Science ; 383(6690): eadk8544, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38547289

RESUMO

Cytoplasmic dynein is a microtubule motor vital for cellular organization and division. It functions as a ~4-megadalton complex containing its cofactor dynactin and a cargo-specific coiled-coil adaptor. However, how dynein and dynactin recognize diverse adaptors, how they interact with each other during complex formation, and the role of critical regulators such as lissencephaly-1 (LIS1) protein (LIS1) remain unclear. In this study, we determined the cryo-electron microscopy structure of dynein-dynactin on microtubules with LIS1 and the lysosomal adaptor JIP3. This structure reveals the molecular basis of interactions occurring during dynein activation. We show how JIP3 activates dynein despite its atypical architecture. Unexpectedly, LIS1 binds dynactin's p150 subunit, tethering it along the length of dynein. Our data suggest that LIS1 and p150 constrain dynein-dynactin to ensure efficient complex formation.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase , Proteínas Adaptadoras de Transdução de Sinal , Complexo Dinactina , Dineínas , Proteínas Associadas aos Microtúbulos , Proteínas do Tecido Nervoso , Microscopia Crioeletrônica , Complexo Dinactina/química , Complexo Dinactina/genética , Complexo Dinactina/metabolismo , Dineínas/química , Dineínas/genética , Dineínas/metabolismo , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Ligação Proteica , Humanos , Células HeLa , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Repetições WD40 , Mapeamento de Interação de Proteínas
2.
Cell ; 186(23): 5054-5067.e16, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37949058

RESUMO

Fatty acids (FAs) play a central metabolic role in living cells as constituents of membranes, cellular energy reserves, and second messenger precursors. A 2.6 MDa FA synthase (FAS), where the enzymatic reactions and structures are known, is responsible for FA biosynthesis in yeast. Essential in the yeast FAS catalytic cycle is the acyl carrier protein (ACP) that actively shuttles substrates, biosynthetic intermediates, and products from one active site to another. We resolve the S. cerevisiae FAS structure at 1.9 Å, elucidating cofactors and water networks involved in their recognition. Structural snapshots of ACP domains bound to various enzymatic domains allow the reconstruction of a full yeast FA biosynthesis cycle. The structural information suggests that each FAS functional unit could accommodate exogenous proteins to incorporate various enzymatic activities, and we show proof-of-concept experiments where ectopic proteins are used to modulate FAS product profiles.


Assuntos
Proteína de Transporte de Acila , Ácidos Graxos , Saccharomyces cerevisiae , Proteína de Transporte de Acila/química , Domínio Catalítico , Ácidos Graxos/biossíntese , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Nature ; 599(7885): 491-496, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34711951

RESUMO

Protein expression and turnover are controlled through a complex interplay of transcriptional, post-transcriptional and post-translational mechanisms to enable spatial and temporal regulation of cellular processes. To systematically elucidate such gene regulatory networks, we developed a CRISPR screening assay based on time-controlled Cas9 mutagenesis, intracellular immunostaining and fluorescence-activated cell sorting that enables the identification of regulatory factors independent of their effects on cellular fitness. We pioneered this approach by systematically probing the regulation of the transcription factor MYC, a master regulator of cell growth1-3. Our screens uncover a highly conserved protein, AKIRIN2, that is essentially required for nuclear protein degradation. We found that AKIRIN2 forms homodimers that directly bind to fully assembled 20S proteasomes to mediate their nuclear import. During mitosis, proteasomes are excluded from condensing chromatin and re-imported into newly formed daughter nuclei in a highly dynamic, AKIRIN2-dependent process. Cells undergoing mitosis in the absence of AKIRIN2 become devoid of nuclear proteasomes, rapidly causing accumulation of MYC and other nuclear proteins. Collectively, our study reveals a dedicated pathway controlling the nuclear import of proteasomes in vertebrates and establishes a scalable approach to decipher regulators in essential cellular processes.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Fatores de Transcrição/metabolismo , Transporte Ativo do Núcleo Celular , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Feminino , Genes myc , Humanos , Masculino , Mitose , Complexo de Endopeptidases do Proteassoma/química , Ligação Proteica , Proteólise
5.
Cell ; 180(6): 1130-1143.e20, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32160528

RESUMO

Fatty acid synthases (FASs) are central to metabolism but are also of biotechnological interest for the production of fine chemicals and biofuels from renewable resources. During fatty acid synthesis, the growing fatty acid chain is thought to be shuttled by the dynamic acyl carrier protein domain to several enzyme active sites. Here, we report the discovery of a γ subunit of the 2.6 megadalton α6-ß6S. cerevisiae FAS, which is shown by high-resolution structures to stabilize a rotated FAS conformation and rearrange ACP domains from equatorial to axial positions. The γ subunit spans the length of the FAS inner cavity, impeding reductase activities of FAS, regulating NADPH turnover by kinetic hysteresis at the ketoreductase, and suppressing off-pathway reactions at the enoylreductase. The γ subunit delineates the functional compartment within FAS. As a scaffold, it may be exploited to incorporate natural and designed enzymatic activities that are not present in natural FAS.


Assuntos
Ácido Graxo Sintases/química , Ácido Graxo Sintases/metabolismo , Proteína de Transporte de Acila/química , Proteína de Transporte de Acila/metabolismo , Aciltransferases/metabolismo , Sítios de Ligação , Domínio Catalítico , Microscopia Crioeletrônica/métodos , Cristalografia por Raios X/métodos , Ácidos Graxos/biossíntese , Ácidos Graxos/química , Modelos Moleculares , Subunidades Proteicas/química , Subunidades Proteicas/isolamento & purificação , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade
6.
Eur. j. anat ; 17(3): 166-175, jul. 2013. ilus, tab
Artigo em Inglês | IBECS | ID: ibc-115998

RESUMO

Better knowledge of unexpected fetal loss is the promise for better parental counseling and for prevention of recurrences. Fetal autopsy can provide a clue to ascertain cause of death in these cases. Variations in the incidence can be attributed to multiple factors. The present study was carried out to help us to develop a database concerning number of autopsies, incidence and types of congenital malformations (CMF) in the North-Western Indian population. The period of study was from January 2010 to November 2011. Autopsy was carried out on 150 fetuses following guidelines provided by a fetal autopsy protocol. Prior to autopsy, prenatal investigations such as ultrasound and radiographs were procured; a brief maternal and family history was noted. Out of a total of 150 autopsies, 87(58%) were induced abortions and 63(42%) spontaneous abortions. In total, the incidence of CMF was 104(69%) of fetal autopsies. The types of CMF were classified as central nervous system defects (CNS) in 49 (33%), gastrointestinal tract (GIT) disorders in 48 (32%), musuculoskeletal (MS) disorders in 31 (21%), genito-urinary (GU) in 25 (17%), and genetic disorders in 12 (8%). Multiple anomalies were present in 40 (27%) fetuses. Anencephaly (meroencephaly) turned out to be the most prevalent anomaly (29%). A few cases showed the occurrence of some uncommon syndromes. Major CMFs manifested very early in intra-uterine life, and could lead to termination of pregnancy (spontaneous or induced) in the 2nd trimester of gestation. Hence the presence of any CMF at the time of birth cannot provide the total percentage of CMF occurring in a given population. The above findings are discussed in the light of the available literature (AU)


No disponible


Assuntos
Humanos , Anormalidades Congênitas/epidemiologia , Doenças Fetais/genética , Anormalidades Múltiplas/epidemiologia , Morte Fetal , Autopsia , Aborto Espontâneo/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...